Плазменно-дуговая резка

Категория:
Термическая резка


Плазменно-дуговая резка

Получение плазменной дуги. Если в электрическую дугу направить поток какого-либо газа, пропуская его через небольшое отверстие плазмообразующего сопла (рис. 96), то столб дуги будет сжат, причем образовавшаяся плазма представляет собой сильно концентрированный источник тепла с высокой температурой, достигающей 20 000—30 000 °С. Газ, сжимающий столб дуги, называют плазмообразующим. В качестве плазмообразующих газов применяют либо одноатомные газы (например, аргон), либо двухатомные (водород, азот). Применяют также смеси двух или нескольких газов и воздух.

Рис. 1. Схема плазменной резки: а — плазменной струей, б — плазменной дугой; 1 — разрезаемый лист, 2 — источник питания, 3 — осциллятор, 4 — реостат, регулирующий вспомогательную дугу, 5 — плазмотрон, 6 — плазменная дуга. 7 —плазменная струя: в — установка для резки: 1 — баллон с газом, 2 —источник питания, 3 — балластный реостат, 4 — плазмотрон

Двухатомные плазмообразующие газы создают плазменную дугу с более растянутой струей, чем одноатомные. Это объясняется тем, что двухатомные газы передают изделию больше тепла из столба дуги в результате образования молекул газа с выделением дополнительного тепла. Поэтому двухатомные газы обеспечивают дугу с большей длиной, но с более низкой температурой, чем одноатомные газы (аргон, гелий и др.).

Сжатая дуга может быть аналогична сварочной дуге прямого и косвенного действия. В первом случае одним из электродов служит обрабатываемый металл, во втором — дуга возбуждается между независимыми от него электродами. Соответственно принято называть сжатую дугу, полученную по первой схеме, — плазменной дугой, а по второй схеме — плазменной струей.

Для разделительной резки металлов более целесообразно применять плазменную дугу, так как установлено, что она имеет более высокий к. п. д., а плазменная горелка менее подвержена износу.

Плазменно-дуговая резка нашла широкое применение при обработке тех металлов и сплавов, которые не поддаются кислородной резке: высоколегированные стали, алюминий, титан и их сплавы, медь и др.

Рис. 2. Распределение температуры в плазменной струе при силе тока дуги 400 А и расходе аргона 0,6 м3/ч

Плазменно-дуговая резка заключается в проплавлении металла на узком участке по линии реза и удалении расплавленного металла струей плазмы, образующейся в дуге. Плазменная дуга применяется главным образом для разделительной резки.

Оборудование для плазменно-дуговой резки. В комплект оборудования для плазменно-дуговой резки входит резак (плазмотрон), пульт управления процессом, источник питания дуги электрическим током, баллоны с плазмообразующими газами и механизм для перемещения плазмотрона вдоль линии реза.

Резак состоит из двух узлов: электродного и соплового. Различают плазмотроны с осевой и вихревой подачей плазмообразую-щего газа для сжатия дуги. Осевая подача плазмообразующего газа применяется в широких соплах. При вихревой подаче плазмо-образующий газ вводят в зону катода и столба по каналам, расположенным по касательной к стенкам дуговой камеры плазмотрона. При этом в камере создается вихревой поток газа со спиралеобразным движением. Вихревая подача плазмообразующего” газа обеспечивает перемешивание газа в столбе дуги и равномерность газовой оболочки вокруг столба.

При осевой подаче конец электрода (вольфрамовый стержень диаметром от 2 до 6 мм и длиной до 100—150 мм) имеет форму заостренного стержня с углом 20—30°, а при вихревой — на конце электрода имеются сменные гильзовые катоды.

Для .охлаждения плазмотронов применяют воду, а в плазмотронах небольшой мощности — сжатый воздух.

Вольфрамовый (или с примесью окислов лантана, иттрия, тория) электрод применяется для работы в инертных газах; при резке в окислительных газах электрод в зоне катода необходимо’ защищать неактивным газом.

Значительное применение находят режущие плазмотроны с. пленочными катодами. Способностью образовывать пленку на катоде обладают цирконий и гафний. При высоких температурах окиснонитридная пленка, обладающая электропроводностью, легко образуется на поверхности катода. Такой катод может продолжительное время работать в окислительной среде, например в сжатом воздухе.

Интенсивность износа катодных вставок и электродов зависит от силы рабочего тока. Чем больше сила тока, тем быстрее изнашивается вставка. Для машинных плазмотронов с циркониевыми катодными вставками и проточной системой водяного охлаждения максимальная сила рабочего тока равна 250—300 А. При этом продолжительность работы катода обычно не превышает 4—6 ч.

Большое значение в плазмотронах имеет конструкция сопла. Чем меньше диаметр сопла и больше его длина, тем выше концентрация энергии, напряжение дуги и больше скорость потока плазмы; дуга становится жесткой, ее режущая способность увеличивается. Однако диаметр и длина сопла обусловливаются силой рабочего тока и расходом газа. Если диаметр сопла очень мал или длина его очень велика, может возникнуть так называе-

Мая двойная дуга (рис. 3), при которой режущая дуга распадается на Две части: одна между катодом и внутренней частью сопла, а другая — между наружной поверхностью сопла и разрезаемым изделием. Двойная дуга может гореть одновременно с режущей, но она существует непродолжительное время и затем пропадает. Двойная дуга действует вне зоны защитного газа и от этого металл кромок загрязняется и подплавляется; двойная дуга может вывести из строя сопло формирующего наконечника. Чаще всего двойная дуга возникает в момент возбуждения режущей дуги. Режущая дуга возбуждается с помощью осциллятора или конденсаторными устройствами. Для предотвращения двойной дуги при зажигании режущей необходимо плавно увеличивать рабочий ток. Это достигается магнитным, тиристорным и другими устройствами.

Для плазменно-дуговой резки применяют источники питания дуги постоянного тока с круто падающими вольт-амперными характеристиками. При резке больших толщин (больше 80 мм) применяют только специальные источники питания с повышенным напряжением холостого хода, например, типа ИПГ-500 и др.

Согласно ГОСТ 14935—69 выпрямители для плазменно-дуговой резки должны иметь напряжение холостого хода 90—500 В и силу тока 300—1000 А.

Рис. 98. Cxема двойной дуги: 1 — катод, 2 — сопло, 3 — металл, 4 — столб режущей сжатой дуги, 5 и 6 — столб двойной дуги на участках наконечник (сопло) — металл и катод — наконечник

Читать далее:



Статьи по теме:


Реклама:




Главная → Справочник → Статьи → БлогФорум