Специальные виды кислородной резки

Категория:
Резание металла


Специальные виды кислородной резки

При обычной кислородной резке, когда режущая струя направлена приблизительно нормально к поверхности металла, прорезается вся его толщина; здесь преследуется цель отделить или отрезать часть металла. Такая резка может быть названа разделительной. Возможен и другой способ использования режущей кислородной струи: она может быть направлена под очень малым углом к поверхности металла, почти параллельно ей (рис. 2, а). В этом случае струя кислорода выжигает на поверхности металла канавку овального сечения. Подобный метод называется кислородной обработкой, иногда кислородной строжкой или кислородной вырубкой металла.

Рис. 257. Пакет листов, подготовленный для резки

Рис. 258. Поверхности после кислородной обработки

Для кислородной обработки применяются специальные резаки, выпускаемые нашей промышленностью. Резак для ручной кислородной обработки типа РП-50 длиной 1200 мм весит 2,8 кг, имеет щиток для защиты руки, расположенной у горячего металла, рычажный клапан для пуска режущего кислорода, три сменных сопла (рис. 3). Резак выбирает канавку шириной 15—50 мм, глубиной 2—20 мм со скоростью 1,5—10 м/мин, удаляя 1,0— 4,5 кг металла в минуту. Расход кислорода равен 200—300 л на 1 кг удаленного металла. Подобным резаком можно выбирать на поверхности металла канавки овального сечения, производя как бы грубую строжку (рис. 2, б). Повторный проход поверхности резаком со срезкой гребешков канавками уменьшенных размеров дает более чистую обработку. При правильной работе получается чистая и гладкая поверхность канавок.

Рис. 3. Ручной резак для кислородном обработки

Кислородную обработку можно уподобить механической обработке металла резанием, с заменой резца кислородным резаком. Соответственно процессом кислородной обработки можно выполнить многие операции обработки резанием: строжку, обточку, расточку, нарезку грубой резьбы и т. п., когда достаточно грубой черновой обработки. Возможны также механизированные станки для кислородной строжки, обточки и т. п., требующие весьма незначительной мощности для перемещения резака вдоль обрабатываемой поверхности.

Рис. 4. Машина для огневой зачистки: 1 – башмаки с резаками; г – рычаги перемещения башмаков

Рис. 5. Установка машины при прокатном стане: 1 – прокатный стан; 2 – заготовка металла; 3 – машина для огневой зачистки: 4 — пульт управления

Рис. 6. Резка кислородным копьем

В настоящее время практическое применение кислородной обработки быстро расширяется. Кислородная обработка нашла довольно широкое применение на металлургических заводах для удаления и вырубки трещин, расслоений и других поверхностных дефектов в обжатых слитках. Удаление производится не только вручную, но и механизированным способом, на специальных машинах для огневой или кислородной зачистки. В этом случае удаляются не отдельные дефекты, а весь наружный слой металла толщиной около 3 мм по всей боковой поверхности слитка. Установленная в общем потоке движения машина для огневой зачистки имеет четыре башмака, на которых закреплены резаки для кислородной обработки. Каждый резак выжигает канавку шириной около 36 мм и глубиной около 3 мм. Горячий слиток, имеющий температуру 950—1100° С, проходит через машину со скоростью 20—40 м/мин. Часовой расход кислорода в машине достигает 3000—4000 м3.

Своеобразным способом является резка кислородным копьем, которое представляет собой толстостенную трубку достаточной длины, присоединенную к стволу или рукоятке. Трубка быстро сгорает во время работы и поэтому должна легко и удобно заменяться новой. Внутренний диаметр трубки 2—4 мм, наружный 8—10 мм. При слишком большом внутреннем диаметре в трубку закладывают стальные прутки, уменьшающие свободное сечение трубки и увеличивающие количество сгорающего металла копья. Процесс резки кислородным копьем заключается в прожигании металла струей кислорода, проходящей через стальную трубку, прижатую свободным концом к прожигаемому металлу. Резка производится без использования газового подогревательного пламени, которое заменяется довольно быстрым сгоранием металла самой трубки-копья до 0,5—1 м/мин. Начинается резка с подогрева места начала реза на металле или, что удобнее, с подогрева конца копья, например сварочной горелкой или дугой. При пропускании кислорода конец копья быстро загорается; дальнейший подогрев не нужен, и можно приступить к резке. Затем копье слегка прижимают к металлу и быстро углубляют в него со скоростью 0,15—0,40 м/мин, выжигая отверстие круглого сечения с гладкими стенками.

Расплавленный шлак выдувается из отверстия наружу избыточным кислородом и образующимися газами. При значительной глубине прожигаемого отверстия необходимо ставить изделие наклонно, облегчая вытекание шлаков из отверстия под действием силы тяжести. Копьем можно резать не только сталь, но и чугун, цветные металлы, затвердевшие шлаки, бетон, каменные породы и т. п. В подобных случаях резка происходит под тепловым воздействием горящего копья. Диаметр прожигаемого отверстия обычно составляет 20—60 мм, глубина его может быть доведена до 3 м. Давление кислорода на входе копья равно .5—7 ати, расход кислорода 30—60 м3/ч. Расход трубки быстро растет с глубиной отверстия.

Рис. 7. Схема кислородно-флюсовой резки: 1 — флюсовый бункер; 2 — пружинная подвеска бункера; 3 — вибратор-встряхиватель бункера, работающий от струи режущего кислорода; 4 — предохранительный клапан; 5 — флюсовый инжектор; в — кислородный редуктор, питающий флюсовый бункер; 7 — резак

Кислородное копье находит различное применение, например прожигание отверстий, леток в металлургических печах, шпуров в козлах и стальных блоках для подрыва их взрывчаткой, отверстий в бетоне и т. п. При резке кислородным копьем искры и брызги шлака разбрасываются на несколько метров, что вызывает необходимость защиты рабочих и устранения опасности пожара.

Рассмотрим специальный процесс кислородно-флюсовой резки, часто дающий хорошие результаты при резке металлов, для которых обычный метод кислородной резки малопригоден или совсем непригоден. Весьма благоприятным для кислородной резки сочетанием физико-химических свойств обладают технически чистое железо и обычная низкоуглеродистая сталь, которые с успехом режутся кислородом. Однако многие легированные стали плохо поддаются обычной кислородной резке, например все стали со значительным содержанием хрома, который при горении стали образует тугоплавкую окись хрома Сг203, преграждающую доступ кислорода к поверхности металла. К таким сталям принадлежат хромоникелевые нержавеющие и жаростойкие стали.

Для резки чугуна, цветных металлов, для которых применение кислородной резки нецелесообразно, разработан специальный процесс кислородно-флюсовой резки и создана необходимая аппаратура. Сущность этого процесса состоит в том, что вместе с режущим кислородом в зону резки вдувается порошкообразный флюс, вносимый во взвешенном состоянии струей режущего кислорода. Флюс, подаваемый в зону резки, состоит главным образом из порошка металлического железа. Сгорая в струе кислорода, железный порошок дает дополнительное количество тепла, расплавляющее тугоплавкие окислы. Окислы железа, образующиеся при сгорании железного порошка, сплавляясь с окислами разрезаемого металла, образуют более легкоплавкий и жидкотеку-чий шлак, легче сдуваемый с поверхности металла и открывающий к ней доступ кислорода. Для получения флюса к железному порошку примешивают порошкообразные флюсующие добавки, облегчающие плавление и вытекание тугоплавких окислов из полости реза. Применяются также флюсы, в основном состоящие из двуокиси кремния Si02, например кварцевого песка. Количество флюсующих добавок зависит от состава разрезаемого металла.

Для кислородно-флюсовой резки необходимо иметь специальную аппаратуру: флюсопитатель и специальный кислородный резак с приспособлениями для подачи флюса. Нормальный флюсопитатель, выпускаемый нашей промышленностью, имеет небольшие размеры и весит около 40 кг. Расход флюса при резке специальных сталей колеблется от 1—2 кг для толщины 10 мм до 10—14 кг для толщины 200 мм на 1 пог. м реза. Флюс расходуется относительно экономнее при больших толщинах. Для малых толщин рекомендуется применять пакетную резку, выбирая оптимальную общую толщину металла. Кислородно-флюсовый способ позволяет успешно резать специальные стали, в том числе нержавеющие и жаростойкие, а также чугун и цветные металлы. Недостатком способа является значительный расход флюса, еще довольно дорогого.


Реклама:



Читать далее:



Статьи по теме:


Главная → Справочник → Статьи → БлогФорум