Газы, присадочная проволока и флюсы для газовой сварки

Категория:
Материалы для газовой сварки


Газы, присадочная проволока и флюсы для газовой сварки

Кислород. Высокая температура газового пламени достигается сжиганием горючего газа или паров жидкости в кислороде.

Кислород в чистом виде при температуре 20 °С и атмосферном давлении представляет собой прозрачный газ без цвета, запаха и вкуса, несколько тяжелее воздуха. Масса 1 м3 кислорода при 20 °С и атмосферном давлении (1 кгс/см2) равна 1,33 кг. Кислород сжижается при нормальном давлении и температуре —182,9 °С. Жидкий кислород прозрачен и имеет голубоватый цвет. Масса 1 л жидкого кислорода равна 1,14 кг; при испарении 1 л кислорода образуется 860 л газа.

Кислород получают разложением воды электрическим током или глубоким охлаждением атмосферного воздуха.

Технический кислород выпускается по ГОСТ 5583—68 трех сортов: 1-го сорта, содержащего не менее 99,7% чистого кислорода, 2-го сорта — не менее 99,5% и 3-го сорта — не менее 99,2% (по объему). Остаток составляют азот и аргон.

Чистота кислорода имеет большое значение, особенно для кислородной резки. Снижение чистоты кислорода ухудшает качество обработки металлов и повышает его расход.

Сжатый кислород, соприкасаясь с маслами или жирами, окисляет их с большими скоростями, в результате чего они самовоспламеняются или взрываются. Поэтому баллоны с кислородом необходимо предохранять от загрязнения маслами.

Горючие газы. К горючим газам относятся прежде всего ацетилен, пропан, природный газ и другие; используются также пары керосина.

Ацетилен чаще других горючих применяется для сварки и Резки; он дает наиболее высокую температуру пламени при сгорании в кислороде (3050—3150 °С). Без ущерба качества и производительности резки ацетилен заменяется другими горючими — пропаном, метаном, парами керосина и др. Технический ацетилен (С2Н2) бесцветен, за счет содержащихся в нем примесей обладает резким неприятным запахом, в 1,1 раза легче воздуха, растворяется в жидкостях.

Ацетилен взрывоопасен; находясь под давлением 1,5—2 ат, взрывается от электрической искры или огня, а также при быстром нагреве выше 200 °С. При температуре выше 530 °С происходит взрывчатое разложение ацетилена.

Смеси ацетилена с кислородом или воздухом при очень малом! содержании ацетилена способны при атмосферном давлении взрываться. Поэтому сварщикам необходимо соблюдать обязательные’ правила эксплуатации газовой аппаратуры, Самовоспламенение! смеси чистого ацетилена с кислородом, выходящей из сопла газовой горелки, происходит при температуре 428 °С.

В промышленности ацетилен получают тремя способами: разложением карбида кальция (СаСа) водой, термоокислительным пиролизом (разложением) нагретого природного газа в смеси с кислородом, разложением жидких углеводородов (нефти, керосина) электрической дугой. Для сварки и резки ацетилен получают из карбида кальция. Технический карбид загрязнен вредными примесями, которые переходят в ацетилен в виде сероводорода, аммиака, фосфористого и кремнистого водорода. Они ухудшают качество сварки и должны удаляться из ацетилена промывкой водой и химической очисткой.

Газы-заменители ацетилена. Пропан-бутановая смесь представляет собой смесь пропана с 5—30% бутана и иногда называется техническим пропаном. Ее получают при добыче природных газов и при переработке нефти. Температура пропан-кислородного пламени низка и достигает 2400 °С; поэтому использовать его можно лишь для сварки стали толщиной не более 3 мм; при большей толщине невозможно хорошо прогреть металл соединения, чтобы получить надежный провар.

Низкотемпературное пламя целесообразно применять при резке, нагреве деталей для правки, для огневой очистки поверхности металла, а также для сварки легкоплавких металлов. Пропан-кислородная сварка стальных листов толщиной до 3 мм по качеству не уступает ацетилено-кислородной сварке. Во всех этих случаях пропан можно заменить ацетиленом.

Для сварочных работ пропан-бутановая смесь доставляется потребителю в сжиженном состоянии. Переход смеси из жидкого состояния в газообразное происходит самопроизвольно в верхней части баллона из-за меньшего удельного веса газа по сравнению с сжиженной смесью.

Технический пропан тяжелее воздуха и имеет неприятный специфический запах.

Природный газ. Природный газ состоит в основном из метана (77—98%) и небольших количеств бутана, пропана и др. Газ почти не имеет запаха, поэтому для обнаружения его утечки в него добавляют специальные резко пахнущие вещества.

Метан-кислородное пламя имеет температуру 2100—2200 °С. Она ниже пропан-кислородного пламени, поэтому природный газ можно применять в ограниченных случаях, главным образом для термической резки.

Прочие газы и горючие жидкости. Для образования газового пламени в качестве горючего можно использовать и другие газы (водород, коксовый, нефтяной газы), горючие жидкости (керосин, бензин).

Жидкие горючие менее дефицитны, но требуют специальной тары по сравнению с газообразными. Для сварочных работ и резки горючая жидкость преобразуется в пары нагревом наконечника горелки или резака. Температура керосино-кислородного пламени 2400—2450° С, бензино-кислородного — 2500—2600® С. Пары жидких горючих можно употреблять в основном для резки и поверхностной обработки металлов 2.

В техническом карбиде кальция содержится до 90% чистого карбида, остальное—примесь извести. После остывания, дробления и сортировки карбид кальция упаковывают по 100—130 кг в герметические барабаны из кровельной стали или оборотную тару— бидоны вместимостью 80 и 120 кг, которые после использования карбида возвращают на карбидный завод.

Теоретически для разложения 1 кг СаСг надо затратить 0,562 кг воды, при этом получается 0,406 кг (372,5 л) ацетилена и 1,156 кг гашеной извести Са(ОН)2. Реакция происходит с выделением тепла (около 475 ккал/кг карбида кальция). Чтобы предотвратить нагревание ацетилена, которое может вызвать взрывчатый его распад, практически расходуется воды от 5 до 15 л в зависимости от конструкции ацетиленовых генераторов, в которых получают ацетилен.

Карбид кальция жадно поглощает пары воды из воздуха с выделением ацетилена.

По ГОСТ 1460—76 карбид кальция выпускается в кусках следующих размеров (грануляции): 2X8; 8×15; 15X25; 25X80 мм. Чем крупнее куски карбида кальция, тем больше выход ацетилена.

С учетом примесей, содержащихся в карбиде кальция, и различной грануляции практически выход ацетилена из карбида кальция в среднем составляет от 250 до 280 л на 1 кг СаСг.

Иногда в карбидном барабане скапливается много пылевидного карбида кальция *. Карбидной пылью можно пользоваться лишь в генераторах особой конструкции. Применять пылевидный карбид кальция в генераторах, предназначенных для работы с карбидом кальция крупной грануляции, нельзя во избежание взрыва.

Сварочная проволока для газовой сварки по химическому составу должна быть такой же, как и металл свариваемого изделия. Марки сварочной проволоки применяют те же и по тому же ГОСТ 2246—70, что и для дуговой сварки. Диаметр проволоки (dnp) устанавливают в зависимости от толщины свариваемой стали и вида сварки. Обычно принимают dnр = б/2, где б —толщина свариваемого металла в мм. При толщине металла более 16 мм применяют прутки диаметром 8 мм. Для сварки алюминия, меди и их сплавов берут проволоку того же состава, что и свариваемый металл. Однако лучшие результаты дает при сварке меди применение проволоки, содержащей раскислители — фосфор, марганец и кремний — до 0,2% каждого. Для сварки алюминия и его сплавов также целесообразно применять проволоку с кремнием и марганцем.

Флюсы применяют для удаления из металла шва неметаллических включений, попадающих в сварочную , ванну, для защиты от окисления кромок свариваемого металла и сварочной проволоки. Флюс растворяет неметаллические включения и окислы, образуя относительно легкоплавкую с малой удельной плотностью механическую смесь, которая легко поднимается в сварочный шлак. Флюсы вводятся в сварочную ванну в виде порошков или паст.

При сварке низкоуглеродистых сталей флюсы не употребляются, так как образующиеся в этом случае легкоплавкие окислы . железа свободно выходят на поверхность шва.

С флюсами выполняется сварка цветных металлов, чугунов и некоторых высоколегированных сталей. Составы этих флюсов приведены при описании технологии сварки соответствующих металлов.


Читать далее:



Статьи по теме:


Реклама:




Главная → Справочник → Статьи → БлогФорум